ME/CFS: evidence for an autoimmune disease


Autoimmunity Reviews

Volume 17, Issue 6, June 2018, Pages 601-609

Autoimmunity Reviews

ReviewMyalgic Encephalomyelitis/Chronic Fatigue Syndrome – Evidence for an autoimmune disease







CarmenScheibenbogena on behalf of the European Network on ME/CFS (EUROMENE)

Cite rights and content

Under a Creative Commons license open access


The pathogenesis of ME/CFS is multifactorial, and immunological and environmental factors play a role.•

Autoimmune mechanisms can be linked with ME/CFS at least in a subset of patients.•

Autoantibodies mostly against nuclear and neurotransmitter receptors are found in a subset of ME/CFS patients.•

Immunomodulatory therapeutic strategies targeting autoantibodies may be beneficial and should be pursued.


Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent and severe chronic disease drastically impairing life quality. The underlying pathomechanism is incompletely understood yet but there is convincing evidence that in at least a subset of patients ME/CFS has an autoimmune etiology. In this review, we will discuss current autoimmune aspects for ME/CFS. Immune dysregulation in ME/CFS has been frequently described including changes in cytokine profiles and immunoglobulin levelsT- and B-cell phenotype and a decrease of natural killer cell cytotoxicity. Moreover, autoantibodies against various antigens including neurotransmitter receptors have been recently identified in ME/CFS individuals by several groups. Consistently, clinical trials from Norway have shown that B-cell depletion with rituximab results in clinical benefits in about half of ME/CFS patients. Furthermore, recent studies have provided evidence for severe metabolic disturbances presumably mediated by serum autoantibodies in ME/CFS. Therefore, further efforts are required to delineate the role of autoantibodies in the onset and pathomechanisms of ME/CFS in order to better understand and properly treat this disease.


AdRadrenergic receptorBAFFB-lymphocyte activating factordUTPasedeoxyuridine 5′-triphosphate nucleotidohydrolaseEBVEpstein-Barr virusFMfibromyalgia5-HT5-hydroxytryptanimeHHVhuman herpes virusIFNγinterferon gammaKIRkiller cell immunoglobulin-like receptorM AChRmuscarinic acetylcholine receptorME/CFSMyalgic Encephalomyelitis/Chronic Fatigue SyndromeMSmultiple sclerosisNKnatural killer cellsPBMCperipheral blood mononuclear cellsPOTSpostural orthostatic tachycardia syndromepSSprimary Sjögren’s syndromeRArheumatoid arthritisSLEsystemic lupus erythematosusSNPsingle nucleotide polymorphismsTCAtricarboxylic acidTfhT follicular helper cellsThT helper cellsTNFαtumor necrosis factor alphaTregregulatory T cells


Autoimmune Biomarker Myalgic Encephalomyelitis Chronic Fatigue Syndrome Autoantibodies

1. Introduction

With an estimated prevalence of 0.2–0.3%, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multisystem disease with unknown etiology. Patients suffer from persistent exhaustion, cognitive impairmentautonomic dysfunction, chronic pain and flu-like symptoms, leading to a substantial reduction of life quality [1].

ME/CFS disease onset is often reported to be triggered by infections and the link between infections and autoimmune diseases is well established [2]. Although the exact pathogenesis is still unknown, the most plausible hypothesis is that dysregulation of immune system, autonomic nervous system and metabolic disturbances contribute to this complex syndrome, in which severe fatigue and cognitive impairment are a central feature (Fig. 1). Stressful life events are frequently associated with disease onset concomitantly with a history of frequent recurrent infections, immune deficiency and autoimmunity [1,3]. There are numerous studies showing immunological, genetic and metabolic alterations consistent with an autoimmune mechanism. Further, the identification of autoantibodies in ME/CFS patients and the clinical benefit associated with B cell depleting therapy provide strong evidence that, at least in a subset of ME/CFS patients, the disease has an autoimmune etiology.

Fig. 1

2. Evidence for autoimmunity in ME/CFS

2.1. Role of infection

Infection by various pathogens, including the Epstein-Barr virus (EBV), the human herpes virus (HHV)-6 and the human parvovirus B19, but also intracellular bacteria, are known as triggers of disease [1,[4][5][6]]. In a subset of patients, ME/CFS begins with infectious mononucleosis and evidence for a potential role of EBV in ME/CFS comes from many studies [4,[7][8][9]]. In 1984, DuBois et al. first described patients with mononucleosis syndrome suffering from long-lasting fatigue and serological evidence of EBV reactivation [4] followed by a number of studies describing ME/CFS patients with serological evidence of chronic active EBV infection [[7][8][9]]. Infectious mononucleosis is known as a risk factor for various autoimmune diseases [2,10]. Several studies show homologies of EBV sequences with human autoantigens such as myelin basic protein for multiple sclerosis (MS) [11]. In a study from our group enhanced IgG reactivity against an EBNA-6 repeat sequence was found in ME/CFS patients [9]. Homologous sequences of various human proteins with an EBNA-6 repeat sequence might be potential targets for antigenic mimicry.

Detection of anti-HHV-6 IgM antibodies and HHV-6 antigen in peripheral blood mononuclear cells (PBMC) and mucosa as evidence for HHV-6 reactivation is more frequent in patients with ME/CFS compared to healthy donors, showing that reactivation of persistent HHV-6 infection could be a trigger factor for ME/CFS [[12][13][14][15]]. In studies from our group evidence for an active HHV-6, HHV-7 or B19 infection was found in a subset of patients and was associated with subfebrility and lymphadenopathy [16]. Others, however, showed no difference between severity of symptoms and viral load of HHV-6 and HHV-7 in DNA from saliva and PBMCs among ME/CFS patients and controls [17]. It should be noted that HHV-6 and HHV-7 infect immune cells, preferentially CD4+ T cells, but also CD8+, monocytes/macrophages and natural killer (NK) cells involved in cellular, humoral and innate immune response [18,19]. Infection of immune cells by these viruses lead to changes in cell surface receptor expression, pro-inflammatory and anti-inflammatory cytokine and chemokine expression level modulating local inflammation and immune response. A role for HHV-6 has been proposed in several autoimmune diseases, including MS, autoimmune connective tissue diseases, and Hashimoto’s thyroiditis [20]. Molecular mimicry between myelin basic protein and an HHV-6 cell membrane protein is suggested to explain this link in MS [21]. Further, for ME/CFS and Gulf War Illness antibodies against the human dUTPase were reported by Halpin et al. [22]. These autoantibodies mainly occur together with antibodies against at least one of multiple HHV-encoded dUTPases suggesting an antigenic mimicry.

Parvovirus B19 infection has been shown to lead to development of ME/CFS. B19-triggered ME/CFS may be associated with a persistent viremia or may occur without viremia [23] and increased circulating TNF-α and IFN-γ were shown [24]. B19-associated ME/CFS was, in some cases, effectively treated with intravenous IgG [5,25,26]. Documented mechanisms in the pathogenesis of B19-associated autoimmunity include cross reaction of anti-B19 antibodies with human proteins, B19-induced apoptosis which results in presentation of self- antigens to T lymphocytes, and the phospholipase activity to the B19 unique VP1 protein region [23].

2.2. Immune cell alterations

Enhanced levels of immunoglobulins and alterations in B cells are frequently found in autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS) [[27][28][29][30]]. Further frequencies of CD21low B cells are frequently increased in these autoimmune diseases [27]. Consistently, alterations of B cell subsets are reported in ME/CFS. Elevated numbers of CD21+ as well as CD19+ and activated CD5+ B cells were described in ME/CFS patients [31,32]. Bradley et al. showed enhanced frequencies of naïve and transitional B cells and diminished plasma blasts [33]. Differently, Brenu et al. did not observe an altered frequency of plasma blasts, but an increase of memory B cells [34]. However, no major alteration of major B cell subpopulations was observed in other studies [3,35]. Mensah et al. reported an increase in CD24+ B cells, a fraction found to be elevated in autoimmune diseases [35]. Further elevated IgG levels in a subset of ME/CFS patients were shown in several studies [3,35,36]. Recently, a whole blood gene expression study discovered a downregulation of genes being involved in B cell differentiation and survival in ME/CFS [37].

T cell activation by infections could play an important role in the onset of autoimmune diseases [38]. In ME/CFS individuals, an increased frequency of activated T cells expressing the activation marker CD26 and HLA-DR has been shown, concomitant to lower levels of CD45RA+CD4+ T cells [31]. Similarly, ME/CFS was associated with higher frequencies of CD38 and HLA-DR co-expressing CD8+ T cells [39]. However, other authors found similar or lower expression of these markers in ME/CFS patients compared to healthy individuals [40,41]. Similarly, there is also evidence for a decreased cytotoxicity of CD 8+ T cells in a subset of ME/CFS patients [[42][43][44][45]]. Of particular interest in autoimmune diseases are T follicular helper cells (Tfh) that induce humoral responses at the germinal centers [46], the anti- inflammatory regulatory T cells (Treg) and the inflammatory T helper 17 (Th17) cells that modulate the activity of autoimmune responses [47]. The frequency of Treg has been addressed by several authors, most of them reporting a paradoxical higher frequency of this cell population in ME/CFS [40,42,48]. However, no studies on the potential role of Tfh and Th17 cells are available in ME/CFS yet.

In contrast to inconsistent B and T cell alterations reported in ME/CFS, diminished numbers of circulating NK cells and reduction of their cytotoxic activity were uniformly shown [31,40,49]. However, enhanced secretion of IFNγ and TNFα by the immunoregulatory CD56 bright NK cell subset was described in ME/CFS [49,50].

In summary, immune dysfunction in ME/CFS, as for other autoimmune disease, is a multifaceted hallmark that requires further studies using new technologies, standardized assays and well defined cohorts to clearly define common patterns.

2.3. Autoantibodies in ME/CFS

Several studies described autoantibodies in ME/CFS mostly against nuclear and membrane structures and neurotransmitter receptors (Table 1).

Table 1. Autoantibodies in ME/CFS.

AutoantigenCohorts of patients/control (n)Autoantibody positive
patients/control (%)
Nuclear structures
139/1497/5 (BioPlex ANA screen) 4/6 (IIF)[57]
Nuclear envelope60/5152/2[51]
Reticulated speckles60/3025/0[55]
68/48 kDa protein114/3713/0[52]
Membrane structures
Cardiolipin2692 (IgM)[59]
4095 (IgM)[60]
Gangliosides42/100 (FM)43[58]
Neurotransmitter receptors and neurotransmitter
M AChR5/11PET: binding to brain
M1 AChR60/3053/0[54]
M3/4 AChR and ®2-AdR268/108significantly elevated compared to
healthy controls
Other autoantibodies
Cytoplasmic intermediate filaments60/3035/13[55]
Neopitopes formed by oxidative or nitrosative damage14/11Significantly elevated compared to healthy controls (IgM titers)[66]

Abbreviations: ANA: antinuclear antibodies; 5-HT: 5-hydroxytryptamine; IIF: indirect immunofluorescence; dUTPasedeoxyuridine 5′-triphosphate nucleotidohydrolase; FM: fibromyalgia.

2.3.1. Autoantibodies against nuclear and membrane structures

Antinuclear antibodies (ANA) were found in one study in 68 % of ME/CFS patients with the majority directed against the nuclear envelope [51]. Further studies showed ANA in 68%, 57%, 23% and 13% of ME/CFS patients [[52][53][54][55]]. Ortega-Hernandez et al. found dsDNA antibodies in 12% of patients [56], but another study failed to show such antibodies in ME/CFS (0.7%) [57].

Klein and Berg described anti-ganglioside antibodies in ME/CFS patients, but not in healthy controls [58]. In addition, they and others found phospholipid autoantibodies in ME/CFS patients [56,58,59] and antibodies against cardiolipin were described in 92–95% of ME/CFS patients in two studies [59,60] but only in 4% in another study [56]. Further autoantibodies against endothelial and neuronal cells were described in 30% and 16% of patients, respectively [56].

2.3.2. Antibodies against neurotransmitter receptors and neurotransmitter

Antibodies against the muscarinic M1 acetylcholine receptor (AChR) were reported in ME/CFS patients and were associated with muscle weakness [54]. Evidence for a functional role of these antibodies comes from a PET study showing reduced binding of a M AChR ligand in brain in antibody positive ME/CFS patients [61]. Antibodies against ß1 and ß2 adrenergic receptors (AdR) and M2/3 AChR were described in postural tachycardia syndrome, characterized by an increased heart rate in the absence of significant hypotension, as well as in orthostatic hypotension. This finding is of relevance for ME/CFS as 11–40% of ME/CFS patients concurrently suffer from postural orthostatic tachycardia syndrome (POTS) [[62][63][64][65]]. In a study from our group, elevated autoantibodies against both ß2-AdR and M3/4 AChR were found in a subset of ME/CFS patients compared to healthy controls [53]. A high correlation was found between levels of ß2 AdR autoantibodies and elevated IgG1–3 subclasses, activated HLA-DR+ T cells and thyroid peroxidase autoantibodies and ANA. The association of ß2 AdR autoantibodies with immune markers suggests an activation of B and T cells expressing ß2 AdRs. Further, disturbance of the AdR and M AChR function may explain symptoms of autonomic dysregulation in ME/CFS.

No differences between ME/CFS patients and controls were found in levels of autoantibodies directed against receptors for angiotensinendothelinmu-opioid, serotonin and dopamine [53,54]. However, autoantibodies against serotonin have been associated with ME/CFS [56,58].

2.3.3. Other autoantibodies

The IgM response against autoantigens formed by oxidative or nitrosative damage was studied by Maes et al. [66]. Autoantibodies directed against these neo-antigens, comprising oleic, palmitic and myristic acidS-farnesyl-l-cysteine, by-products of lipid peroxidation, e.g. malondialdehyde, and N-oxide modified amino acids, e.g. nitro-tyrosine and nitro-tryptophan, were significantly higher in ME/CFS patients than in controls. In addition, they observed that the level of these autoantibodies correlates with severity of illness and symptoms. Although increased IgM antibodies against these oxidatively damaged antigens were shown in major depression, too, a higher immune response was found in ME/CFS [67].

2.4. Soluble markers of autoimmunity

Autoimmunity is associated with enhanced levels of circulating inflammatory cytokines playing an important role in the pathogenesis of autoimmune diseases [68]. Elevated levels of cytokines related to Th1- as well as Th2-driven responses were reported for ME/CFS in several studies [42,[69][70][71][72][73][74]]. Further cytokine levels in ME/CFS were associated with severity and duration of illness [[72][73][74]]. However, alterations in cytokine profiles in ME/CFS were not found in all studies [75,76].

Elevated levels of B lymphocyte activating factor (BAFF) were described in a variety of autoimmune diseases including RA, SLE and pSS [77]. BAFF regulates the survival and maturation of B cells and mediates the IL-10 production of regulatory B cells [78,79]. Elevated levels of BAFF were shown in a subset of patients with ME/CFS in comparison to healthy controls [80]. As the gene expression of the BAFF receptor (TNFRSF13C) is reduced in ME/CFS, increased serum BAFF levels may represent a compensatory mechanism [37]. Interestingly, elevated serum BAFF levels correlated with the autoantibody production in RA, SLE and pSS [81]. In ME/CFS an association between BAFF and autoantibodies was not described so far.

Activin A and B, members of the Transforming Growth Factor β family, are involved in the control of inflammation and muscle mass [82]. Elevated levels of activin B as well as an elevated ratio of activin A or B to the binding protein follostatin in ME/CFS patients were demonstrated in a recent study [83]. An association of increased activin A with inflammatory bowel disease, RA, and asthma was already shown [82].

CD26 is a peptide-cleaving enzyme associated with immune regulation. In various autoimmune diseases, such as MS, Grave’s disease, and RA increased numbers of CD26 T cells were found in inflamed tissues and peripheral blood [84]. Fletcher et al. reported a higher frequency of CD26 expressing CD2+ lymphocytes in ME/CFS, but a decreased expression level on T and NK cells [85]. Further, they observed a reduction of the soluble CD26. Reduced serum CD26 levels were also reported for SLE and RA showing an inverse correlation with disease activity [84]. Low CD26 expression on PBMCs in ME/CFS was shown to correlate with reduced post-exercise muscle action potential, increased exercise- mediated lipid peroxidation, reduced quality of life and enhanced pain [86].

Other serum factors, frequently elevated in autoimmune disease like sCD30, sCD23, soluble cytotoxic T lymphocyte-associated antigen-4 (sCTLA-4) or the soluble IL-2 receptor (sIl-2R) are not described in ME/CFS so far [[87][88][89][90][91][92]].

2.5. Genetic variants associated with autoimmunity

It is well established that certain HLA alleles are associated with autoimmune diseases. Smith et al. showed an increased prevalence of the class II major histocompatibility complex HLA-DQB1  01 allele in ME/CFS patients [93]. Two others variants of HLA-DQB1 in combination with two RAGE-374A variants were associated with ME/CFS [94]. In another study the interaction of killer cell immunoglobulin-like receptors (KIRs) and their HLA class I epitopes were studied. An excess of KIR3DL1 and KIR3DS1 missing their HLA-Bw4Ile80 binding motif was shown in ME/CFS, leading potentially to an ongoing activation [95].

In the last years, genome-wide association studies revealed variants of various genes with either gain- or loss-of-function that are associated with the risk to develop autoimmune diseases. These single nucleotide polymorphisms (SNP) in receptors, enzymes or transcription factors play a role in B cell activationT cell development, activation and proliferation, and cytokine signaling which are crucial in autoimmune diseases [[96][97][98][99][100]]. Further, it is becoming increasingly clear that elements of the non-coding genome regulate a variety of normal immune functions and that dysregulation of enhancer elements or long non- coding RNA may play a key role in autoimmunity [101]. So far only polymorphisms in cytokine as well as toll-like receptor signaling pathways and complement cascade were studied showing an association with ME/CFS [102,103]. Due to its regulation of the inflammatory response the glucocorticoid receptor gene NR3C1 has gained interest. Several variants (SNPs) within NR3C1 gene were shown to be significantly associated with ME/CFS [104,105].

2.6. Energy metabolism and autoimmunity

Immunometabolism represents the interface between immunology and metabolism and is an exciting emerging field of research in autoimmunity [[106][107][108]]. The metabolic requirements of immune cells depend on their state of resting or activation and differentiation. Their activation results in a metabolic switch to aerobic glycolysis in order to provide enough energy and bio-precursors to meet the requirements for supporting rapid cell proliferation and immune functions. A growing body of evidence suggests that energy metabolism is crucial for the maintenance of chronic inflammation, not only in terms of energy supply but also in the control of the immune response through metabolic signals [106,107]. It has been suggested that disturbances in this intricate metabolic-immune cross-talk may be closely linked with and contribute to autoimmunity, although the precise pathomechanisms involved still remain to be elucidated [107,108]. It is also striking that several glycolytic enzymes act as autoantigens in rheumatic inflammatory disorders [109], although their role in ME/CFS remains unclear.

The profound and debilitating fatigue experienced by ME/CFS individuals led to the hypothesis that energy metabolism may be dysregulated. Defects in mitochondrial function in ME/CFS were shown in various studies from our group and others [[110][111][112][113]]. Metabolic profile had revealed disturbances related to energy, amino acids, nucleotidesnitrogen metabolism and oxidative stress in ME/CFS [[114][115][116][117][118][119]]. A metabolic shift toward aerobic glycolysis resulting in insufficient tricarboxylic acid (TCA) cycle and inadequate ATP production was reported recently, although the underlying basis has yet to be established [116,119]. Interestingly, the 2016 Fluge et al. study points to a secondary metabolic change driven by a serum factor in ME/CFS patients [116].

As dysfunctional metabolic pathways can directly influence and exacerbate defective immune responses, establishing the bioenergetic metabolism status of the different subsets of immune cells in ME/CFS has become a topic of increasing interest.

2.7. Comorbidity with autoimmune diseases

Comorbidity of ME/CFS with various autoimmune or immune-mediated diseases including fibromyalgia (FM), Hashimoto’s thyroiditis and POTS is observed (Fig. 2). Especially for FM there is considerable overlap with up to 77% of patients fulfilling disease criteria for both ME/CFS and FM [120]. FM is characterized by chronic widespread pain and is common in autoimmune diseases with around 50% of prevalence in patients with RA and SLE [121,122]. According to the modified ACR 2010 criteria FM has an overall estimated prevalence of 5.4%. In a recent study from our group analyzing clinical subgroups in a large Spanish ME/CFS cohort was reported FM comorbidity ranging from 26% to 91% [123]. In another study including patient cohorts from Norway, UK and USA, a comorbidity for ME/CFS and FM of 30% was observed [124]. In a similar manner Hashimoto’s thyroiditis characterized by elevated antibodies against thyroid peroxidase is frequent in autoimmune disease, whereas the overall prevalence is around 0.8% in the general population [125]. Hashimoto’s thyroiditis is found in 17–20% in ME/CFS patients [53,123]. Moreover, 11–40% of ME/CFS patients suffer from POTS [[62][63][64][65]]. Interestingly, for both disorders elevated frequencies of autoantibodies directed against AdRs and M AChRs were shown [53,[126][127][128]]. Furthermore, a substantial number of ME/CFS patients have a family history of autoimmune diseases [129,130].

Fig. 2

3. Therapies targeting autoimmunity in ME/CFS

First clear evidence for a pathogenic role of autoantibodies in ME/CFS comes from two clinical trials with the monoclonal anti-CD20 antibody rituximab [129,131]. Upon depletion of CD20+ B cells with rituximab, a monoclonal antibody directed against the B cell surface protein CD20, approximately 60% of patients experienced a partial or complete, and in some patients sustained clinical remission (Table 2). The delayed onset of response with a median of approximately 4 months in both trials suggests that clinical effects are not directly mediated by depletion of CD20+ B cells, but by diminishing short-lived antibody-producing plasma cells arising from CD20+ memory B cells, followed by subsequent wash-out of autoantibodies. Results from a multicenter controlled trial with rituximab are awaited in spring 2018.

Table 2. Clinical trials targeting autoimmunity in ME/CFS.

DosageStudy designPatients (n)EvaluationOutcomeRefs.
Intravenous IgG
1 g/kg/m2

RCT28FI & SRNo difference[133]
2 g/kg/m2

RCT49FI & SRFollow-up m3: 43% vs. 12%[134]
0.5 g/1 g/2 g/kg/m2

RCT99FI & SRNo difference[135]
1 g/kg/m2

RCT70 (adolescents)FIFollow-up m6: 72% vs. 44%[136]
500 mg/m2

RCT30FI & SRImprovement 67% vs. 13%[131]
500 mg/m2 6×Single arm29FI & SRImprovement 62%[129]
Ongoing Trials
Cyclophosphamide (Endoxan®)Fluge et al., unpub.

Abbreviations: RCT = Randomized controlled trial; FI=Functional Improvement; SR = Symptom reduction, assessed by questionnaires; unpub.: unpublished data.

Few other treatment modalities targeting autoimmunity were evaluated in clinical trials in ME/CFS (Table 2). High dose intravenous IgG therapy is efficacious in autoantibody-mediated diseases. Several intravenous IgG studies were performed in ME/CFS during the 80’s with two randomized controlled trials with positive and two with a negative outcome [132]. Preliminary data from an ongoing trial in Norway with cyclophosphamide suggests therapeutic efficacy of this broadly immunosuppressive drug (Fluge et al., unpublished data). Immunoadsorption is an apheresis in which IgG is specifically removed from plasma resulting in clinical improvement in various types of autoimmune disease. We performed a pilot trial in 10 patients with ME/CFS and observed first evidence for efficacy [137].

4. Conclusion

There is compelling evidence that autoimmune mechanisms play a role in ME/CFS. However clinical heterogeneity in disease onset (infection versus non-infection triggered), presence of immune-associated symptoms, and divergent immunological alterations point to the existence of subgroups of ME/CFS patients with possibly different pathomechanisms. Therefore, it is important to identify clinically useful diagnostic markers to select patients with autoimmune-mediated disease for clinical trials. The search for autoantibodies is of great importance enabling to develop potential biomarkers for diagnosis and providing a rationale for therapeutic interventions. Encouraging results from first clinical trials warrant larger studies with rituximab and other strategies targeting autoantibodies.


This review is based upon work from European Network on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (EUROMENE) as part of Cost Action CA15111 supported by the EU Framework Program Horizon 2020. Website:

Author contributions

FS and CS were responsible for the first draft of the protocol, which was critically reviewed, further developed and approved by all authors.

Declaration of competing interests

JB reports personal fees from ALBAJUNA THERAPEUTICS, S.L., outside the submitted work; CS has received grant support for clinical trials and research from Fresenius, Shire, Lost Voices, SolveME, MERUK, IBB, and speaking honoraria from Octapharma and Shire. FS, EC, JCM, SS and MM have no conflict of interest to declare.


Not applicable.


[1]B.M. Carruthers, M.I. van de Sande, K.L. De Meirleir, N.G. Klimas, G. Broderick, T. Mitchell, et al.Myalgic encephalomyelitis: international consensus criteriaJ Intern Med, 270 (2011), pp. 327-338CrossRefView Record in ScopusGoogle Scholar[2]A. Ascherio, K.L. MungerEBV and autoimmunityCurr Top Microbiol Immunol, 390 (2015), pp. 365-385CrossRefView Record in ScopusGoogle Scholar[3]S. Guenther, M. Loebel, A.A. Mooslechner, M. Knops, L.G. Hanitsch, P. Grabowski, K. Wittke, C. Meisel, N. Unterwalder, H.D. Volk, C. ScheibenbogenFrequent IgG subclass and mannose binding lectin deficiency in patients with chronic fatigue syndromeHum Immunol, 76 (10) (2015), pp. 729-735, 10.1016/j.humimm.2015.09.028ArticleDownload PDFView Record in ScopusGoogle Scholar[4]R.E. DuBois, J.K. Seeley, I. Brus, K. Sakamoto, M. Ballow, S. Harada, et al.Chronic mononucleosis syndromeSouth Med J, 77 (1984), pp. 1376-1382CrossRefView Record in ScopusGoogle Scholar[5]S.K. Jacobson, J.S. Daly, G.M. Thorne, K. McIntoshChronic parvovirus B19 infection resulting in chronic fatigue syndrome: case history and reviewClin Infect Dis, 24 (1997), pp. 1048-1051View Record in ScopusGoogle Scholar[6]O.D. Ortega-Hernandez, Y. ShoenfeldInfection, vaccination, and autoantibodies in chronic fatigue syndrome, cause or coincidence?Ann N Y Acad Sci, 1173 (2009), pp. 600-609CrossRefView Record in ScopusGoogle Scholar[7]F.A. ManianSimultaneous measurement of antibodies to Epstein-Barr virus, human herpesvirus 6, herpes simplex virus types 1 and 2, and 14 enteroviruses in chronic fatigue syndrome: is there evidence of activation of a nonspecific polyclonal immune response?Clin Infect Dis, 19 (1994), pp. 448-453CrossRefView Record in ScopusGoogle Scholar[8]M. Loebel, K. Strohschein, C. Giannini, U. Koelsch, S. Bauer, C. Doebis, et al.Deficient EBV-specific B- and T-cell response in patients with chronic fatigue syndromePLoS One, 9 (2014), Article e85387CrossRefView Record in ScopusGoogle Scholar[9]M. Loebel, M. Eckey, F. Sotzny, E. Hahn, S. Bauer, P. Grabowski, et al.Serological profiling of the EBV immune response in chronic fatigue syndrome using a peptide microarrayPLoS One, 12 (2017), Article e0179124CrossRefView Record in ScopusGoogle Scholar[10]H.H. Niller, H. Wolf, E. Ay, J. MinarovitsEpigenetic dysregulation of epstein-barr virus latency and development of autoimmune diseaseAdv Exp Med Biol, 711 (2011), pp. 82-102CrossRefView Record in ScopusGoogle Scholar[11]A.G. Gabibov, A.A. Belogurov Jr., Y.A. Lomakin, M.Y. Zakharova, M.E. Avakyan, V.V. Dubrovskaya, et al.Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigenFASEB J, 25 (2011), pp. 4211-4221CrossRefView Record in ScopusGoogle Scholar[12]D.V. Ablashi, H.B. Eastman, C.B. Owen, M.M. Roman, J. Friedman, J.B. Zabriskie, et al.Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue syndrome (CFS) patientsJ Clin Virol, 16 (2000), pp. 179-191ArticleDownload PDFView Record in ScopusGoogle Scholar[13]S. Chapenko, A. Krumina, S. Kozireva, Z. Nora, A. Sultanova, L. Viksna, et al.Activation of human herpesviruses 6 and 7 in patients with chronic fatigue syndromeJ Clin Virol, 37 (Suppl. 1) (2006), pp. S47-51View Record in ScopusGoogle Scholar[14]M. Fremont, K. Metzger, H. Rady, J. Hulstaert, K. De MeirleirDetection of herpesviruses and parvovirus B19 in gastric and intestinal mucosa of chronic fatigue syndrome patientsIn Vivo, 23 (2009), pp. 209-213View Record in ScopusGoogle Scholar[15]D. Di Luca, M. Zorzenon, P. Mirandola, R. Colle, G.A. Botta, E. CassaiHuman herpesvirus 6 and human herpesvirus 7 in chronic fatigue syndromeJ Clin Microbiol, 33 (1995), pp. 1660-1661CrossRefView Record in ScopusGoogle Scholar[16]S. Chapenko, A. Krumina, I. Logina, S. Rasa, M. Chistjakovs, A. Sultanova, et al.Association of active human herpesvirus-6, -7 and parvovirus b19 infection with clinical outcomes in patients with myalgic encephalomyelitis/chronic fatigue syndromeAdv Virol, 2012 (2012), Article 205085View Record in ScopusGoogle Scholar[17]B. Oakes, M. Hoagland-Henefield, A.L. Komaroff, J.L. Erickson, B.T. HuberHuman endogenous retrovirus-K18 superantigen expression and human herpesvirus-6 and human herpesvirus-7 viral loads in chronic fatigue patientsClin Infect Dis, 56 (2013), pp. 1394-1400CrossRefView Record in ScopusGoogle Scholar[18]F. Miyake, T. Yoshikawa, H. Sun, A. Kakimi, M. Ohashi, S. Akimoto, et al.Latent infection of human herpesvirus 7 in CD4(+) T lymphocytesJ Med Virol, 78 (2006), pp. 112-116CrossRefView Record in ScopusGoogle Scholar[19]L. De Bolle, J. Van Loon, E. De Clercq, L. NaesensQuantitative analysis of human herpesvirus 6 cell tropismJ Med Virol, 75 (2005), pp. 76-85CrossRefView Record in ScopusGoogle Scholar[20]F. Broccolo, L. Fusetti, L. Ceccherini-NelliPossible role of human herpesvirus 6 as a trigger of autoimmune diseaseScientificWorldJournal, 2013 (2013), Article 867389View Record in ScopusGoogle Scholar[21]M.V. Tejada-Simon, Y.C. Zang, J. Hong, V.M. Rivera, J.Z. ZhangCross-reactivity with myelin basic protein and human herpesvirus-6 in multiple sclerosisAnn Neurol, 53 (2003), pp. 189-197View Record in ScopusGoogle Scholar[22]P. Halpin, M.V. Williams, N.G. Klimas, M.A. Fletcher, Z. Barnes, M.E. ArizaMyalgic encephalomyelitis/chronic fatigue syndrome and gulf war illness patients exhibit increased humoral responses to the herpesviruses-encoded dUTPase: implications in disease pathophysiologyJ Med Virol, 89 (2017), pp. 1636-1645CrossRefView Record in ScopusGoogle Scholar[23]J.R. KerrThe role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune diseaseJ Clin Pathol, 69 (2016), pp. 279-291CrossRefView Record in ScopusGoogle Scholar[24]J.R. Kerr, F. Barah, D.L. Mattey, I. Laing, S.J. Hopkins, I.V. Hutchinson, et al.Circulating tumour necrosis factor-alpha and interferon-gamma are detectable during acute and convalescent parvovirus B19 infection and are associated with prolonged and chronic fatigueJ Gen Virol, 82 (2001), pp. 3011-3019CrossRefView Record in ScopusGoogle Scholar[25]J.R. Kerr, V.S. Cunniffe, P. Kelleher, R.M. Bernstein, I.N. BruceSuccessful intravenous immunoglobulin therapy in 3 cases of parvovirus B19-associated chronic fatigue syndromeClin Infect Dis, 36 (2003), pp. e100-6View Record in ScopusGoogle Scholar[26]S.A. McGhee, B. Kaska, M. Liebhaber, E.R. StiehmPersistent parvovirus-associated chronic fatigue treated with high dose intravenous immunoglobulinPediatr Infect Dis J, 24 (2005), pp. 272-274CrossRefView Record in ScopusGoogle Scholar[27]K. Thorarinsdottir, A. Camponeschi, N. Cavallini, O. Grimsholm, L. Jacobsson, I. Gjertsson, I.L. MartenssonCD21(-/low) B cells in human blood are memory cellsClin Exp Immunol, 185 (2) (2016), pp. 252-262, 10.1111/cei.12795CrossRefView Record in ScopusGoogle Scholar[28]I. Isnardi, Y.S. Ng, L. Menard, G. Meyers, D. Saadoun, I. Srdanovic, et al.Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clonesBlood, 115 (2010), pp. 5026-5036ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[29]D. Saadoun, B. Terrier, J. Bannock, T. Vazquez, C. Massad, I. Kang, et al.Expansion of autoreactive unresponsive CD21-/low B cells in Sjogren’s syndrome-associated lymphoproliferationArthritis Rheum, 65 (2013), pp. 1085-1096CrossRefView Record in ScopusGoogle Scholar[30]C. Wehr, H. Eibel, M. Masilamani, H. Illges, M. Schlesier, H.H. Peter, et al.A new CD21low B cell population in the peripheral blood of patients with SLEClin Immunol, 113 (2004), pp. 161-171ArticleDownload PDFView Record in ScopusGoogle Scholar[31]N.G. Klimas, F.R. Salvato, R. Morgan, M.A. FletcherImmunologic abnormalities in chronic fatigue syndromeJ Clin Microbiol, 28 (1990), pp. 1403-1410CrossRefView Record in ScopusGoogle Scholar[32]U. Tirelli, G. Marotta, S. Improta, A. PintoImmunological abnormalities in patients with chronic fatigue syndromeScand J Immunol, 40 (1994), pp. 601-608CrossRefView Record in ScopusGoogle Scholar[33]A.S. Bradley, B. Ford, A.S. BansalAltered functional B cell subset populations in patients with chronic fatigue syndrome compared to healthy controlsClin Exp Immunol, 172 (2013), pp. 73-80CrossRefView Record in ScopusGoogle Scholar[34]E.W. Brenu, T.K. Huth, S.L. Hardcastle, K. Fuller, M. Kaur, S. Johnston, et al.Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitisInt Immunol, 26 (2014), pp. 233-242CrossRefView Record in ScopusGoogle Scholar[35]F. Mensah, A. Bansal, S. Berkovitz, A. Sharma, V. Reddy, M.J. Leandro, et al.Extended B cell phenotype in patients with myalgic encephalomyelitis/chronic fatigue syndrome: a cross-sectional studyClin Exp Immunol, 184 (2016), pp. 237-247CrossRefView Record in ScopusGoogle Scholar[36]M. Lobel, A.A. Mooslechner, S. Bauer, S. Gunther, A. Letsch, L.G. Hanitsch, et al.Polymorphism in COMT is associated with IgG3 subclass level and susceptibility to infection in patients with chronic fatigue syndromeJ Transl Med, 13 (2015), p. 264View Record in ScopusGoogle Scholar[37]C.B. Nguyen, L. Alsoe, J.M. Lindvall, D. Sulheim, E. Fagermoen, A. Winger, et al.Whole blood gene expression in adolescent chronic fatigue syndrome: an exploratory cross-sectional study suggesting altered B cell differentiation and survivalJ Transl Med, 15 (2017), p. 102View Record in ScopusGoogle Scholar[38]K.H. MillsTLR-dependent T cell activation in autoimmunityNat Rev Immunol, 11 (2011), pp. 807-822CrossRefView Record in ScopusGoogle Scholar[39]A.L. Landay, C. Jessop, E.T. Lennette, J.A. LevyChronic fatigue syndrome: clinical condition associated with immune activationLancet, 338 (1991), pp. 707-712ArticleDownload PDFView Record in ScopusGoogle Scholar[40]M. Curriu, J. Carrillo, M. Massanella, J. Rigau, J. Alegre, J. Puig, et al.Screening NK-, B- and T-cell phenotype and function in patients suffering from chronic fatigue syndromeJ Transl Med, 11 (2013), p. 68CrossRefView Record in ScopusGoogle Scholar[41]C.M. Swanink, J.H. Vercoulen, J.M. Galama, M.T. Roos, L. Meyaard, J. van der Ven-Jongekrijg, et al.Lymphocyte subsets, apoptosis, and cytokines in patients with chronic fatigue syndromeJ Infect Dis, 173 (1996), pp. 460-463CrossRefView Record in ScopusGoogle Scholar[42]E.W. Brenu, M.L. van Driel, D.R. Staines, K.J. Ashton, S.B. Ramos, J. Keane, et al.Immunological abnormalities as potential biomarkers in chronic fatigue syndrome/Myalgic encephalomyelitisJ Transl Med, 9 (2011), p. 81CrossRefView Record in ScopusGoogle Scholar[43]S.L. Hardcastle, E.W. Brenu, S. Johnston, T. Nguyen, T. Huth, N. Wong, et al.Characterisation of cell functions and receptors in chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME)BMC Immunol, 16 (2015), p. 35View Record in ScopusGoogle Scholar[44]E.W. Brenu, S. Broadley, T. Nguyen, S. Johnston, S. Ramos, D. Staines, et al.A preliminary comparative assessment of the role of CD8+ T cells in chronic fatigue syndrome/myalgic encephalomyelitis and multiple sclerosisJ Immunol Res, 2016 (2016), Article 9064529View Record in ScopusGoogle Scholar[45]J. Theorell, I. Bileviciute-Ljungar, B. Tesi, H. Schlums, M.S. Johnsgaard, B. Asadi-Azarbaijani, et al.Unperturbed cytotoxic lymphocyte phenotype and function in myalgic encephalomyelitis/chronic fatigue syndrome patientsFront Immunol, 8 (2017), p. 723View Record in ScopusGoogle Scholar[46]S.G. Tangye, C.S. Ma, R. Brink, E.K. DeenickThe good, the bad and the ugly – TFH cells in human health and diseaseNat Rev Immunol, 13 (2013), pp. 412-426CrossRefView Record in ScopusGoogle Scholar[47]B. Afzali, G. Lombardi, R.I. Lechler, G.M. LordThe role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune diseaseClin Exp Immunol, 148 (2007), pp. 32-46CrossRefView Record in ScopusGoogle Scholar[48]S. Ramos, E. Brenu, S. Broadley, R. Kwiatek, J. Ng, T. Nguyen, et al.Regulatory T, natural killer T and gammadelta T cells in multiple sclerosis and chronic fatigue syndrome/myalgic encephalomyelitis: a comparisonAsian Pac J Allergy Immunol, 34 (2016), pp. 300-305View Record in ScopusGoogle Scholar[49]E.W. Brenu, M.L. van Driel, D.R. Staines, K.J. Ashton, S.L. Hardcastle, J. Keane, et al.Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitisJ Transl Med, 10 (2012), p. 88View Record in ScopusGoogle Scholar[50]M.A. Cooper, T.A. Fehniger, S.C. Turner, K.S. Chen, B.A. Ghaheri, T. Ghayur, et al.Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subsetBlood, 97 (2001), pp. 3146-3151ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[51]K. Konstantinov, A. von Mikecz, D. Buchwald, J. Jones, L. Gerace, E.M. TanAutoantibodies to nuclear envelope antigens in chronic fatigue syndromeJ Clin Invest, 98 (1996), pp. 1888-1896CrossRefView Record in ScopusGoogle Scholar[52]M. Nishikai, S. Tomomatsu, R.W. Hankins, S. Takagi, K. Miyachi, S. Kosaka, et al.Autoantibodies to a 68/48 kDa protein in chronic fatigue syndrome and primary fibromyalgia: a possible marker for hypersomnia and cognitive disordersRheumatology, 40 (2001), pp. 806-810View Record in ScopusGoogle Scholar[53]M. Loebel, P. Grabowski, H. Heidecke, S. Bauer, L.G. Hanitsch, K. Wittke, et al.Antibodies to beta adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue SyndromeBrain Behav Immun, 52 (2016), pp. 32-39ArticleDownload PDFView Record in ScopusGoogle Scholar[54]S. Tanaka, H. Kuratsune, Y. Hidaka, Y. Hakariya, K.I. Tatsumi, T. Takano, et al.Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndromeInt J Mol Med, 12 (2003), pp. 225-230View Record in ScopusGoogle Scholar[55]A. von Mikecz, K. Konstantinov, D.S. Buchwald, L. Gerace, E.M. TanHigh frequency of autoantibodies to insoluble cellular antigens in patients with chronic fatigue syndromeArthritis Rheum, 40 (1997), pp. 295-305View Record in ScopusGoogle Scholar[56]O.D. Ortega-Hernandez, M. Cuccia, S. Bozzini, N. Bassi, S. Moscavitch, L.M. Diaz-Gallo, et al.Autoantibodies, polymorphisms in the serotonin pathway, and human leukocyte antigen class II alleles in chronic fatigue syndrome: are they associated with age at onset and specific symptoms?Ann N Y Acad Sci, 1173 (2009), pp. 589-599CrossRefView Record in ScopusGoogle Scholar[57]K. Op De Beeck, P. Vermeersch, P. Verschueren, R. Westhovens, G. Marien, D. Blockmans, et al.Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosisAutoimmun Rev, 12 (2012), pp. 137-143ArticleDownload PDFView Record in ScopusGoogle Scholar[58]R. Klein, P.A. BergHigh incidence of antibodies to 5-hydroxytryptamine, gangliosides and phospholipids in patients with chronic fatigue and fibromyalgia syndrome and their relatives: evidence for a clinical entity of both disordersEur J Med Res, 1 (1995), pp. 21-26View Record in ScopusGoogle Scholar[59]Y. Hokama, C. Empey-Campora, C. Hara, N. Higa, N. Siu, R. Lau, et al.Acute phase phospholipids related to the cardiolipin of mitochondria in the sera of patients with chronic fatigue syndrome (CFS), chronic Ciguatera fish poisoning (CCFP), and other diseases attributed to chemicals, Gulf War, and marine toxinsJ Clin Lab Anal, 22 (2008), pp. 99-105CrossRefView Record in ScopusGoogle Scholar[60]Y. Hokama, C.E. Campora, C. Hara, T. Kuribayashi, D. Le Huynh, K. YabusakiAnticardiolipin antibodies in the sera of patients with diagnosed chronic fatigue syndromeJ Clin Lab Anal, 23 (2009), pp. 210-212CrossRefView Record in ScopusGoogle Scholar[61]S. Yamamoto, Y. Ouchi, D. Nakatsuka, T. Tahara, K. Mizuno, S. Tajima, et al.Reduction of [11C](+)3-MPB binding in brain of chronic fatigue syndrome with serum autoantibody against muscarinic cholinergic receptorPLoS One, 7 (2012), Article e51515CrossRefView Record in ScopusGoogle Scholar[62]G.K. Reynolds, D.P. Lewis, A.M. Richardson, B.A. LidburyComorbidity of postural orthostatic tachycardia syndrome and chronic fatigue syndrome in an Australian cohortJ Intern Med, 275 (2014), pp. 409-417CrossRefView Record in ScopusGoogle Scholar[63]A. Hoad, G. Spickett, J. Elliott, J. NewtonPostural orthostatic tachycardia syndrome is an under- recognized condition in chronic fatigue syndromeQJM, 101 (2008), pp. 961-965CrossRefView Record in ScopusGoogle Scholar[64]J.F. Jones, A. Nicholson, R. Nisenbaum, D.A. Papanicolaou, L. Solomon, R. Boneva, et al.Orthostatic instability in a population-based study of chronic fatigue syndromeAm J Med, 118 (2005), p. 1415View Record in ScopusGoogle Scholar[65]S. Dahan, L. Tomljenovic, Y. ShoenfeldPostural orthostatic tachycardia syndrome (POTS)—a novel member of the autoimmune familyLupus, 25 (2016), pp. 339-342CrossRefView Record in ScopusGoogle Scholar[66]M. Maes, I. Mihaylova, J.C. LeunisChronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteinsNeuro Endocrinol Lett, 27 (2006), pp. 615-621View Record in ScopusGoogle Scholar[67]M. Maes, I. Mihaylova, M. Kubera, J.C. Leunis, F.N. Twisk, M. GeffardIgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depressionMetab Brain Dis, 27 (2012), pp. 415-423CrossRefView Record in ScopusGoogle Scholar[68]K.D. Moudgil, D. ChoubeyCytokines in autoimmunity: role in induction, regulation, and treatmentJ Interf Cytokine Res, 31 (2011), pp. 695-703CrossRefView Record in ScopusGoogle Scholar[69]S.F. Khaiboullina, K.L. DeMeirleir, S. Rawat, G.S. Berk, R.S. Gaynor-Berk, T. Mijatovic, et al.Cytokine expression provides clues to the pathophysiology of Gulf War illness and myalgic encephalomyelitisCytokine, 72 (2015), pp. 1-8ArticleDownload PDFView Record in ScopusGoogle Scholar[70]A. Skowera, A. Cleare, D. Blair, L. Bevis, S.C. Wessely, M. PeakmanHigh levels of type 2 cytokine- producing cells in chronic fatigue syndromeClin Exp Immunol, 135 (2004), pp. 294-302View Record in ScopusGoogle Scholar[71]M.A. Fletcher, X.R. Zeng, Z. Barnes, S. Levis, N.G. KlimasPlasma cytokines in women with chronic fatigue syndromeJ Transl Med, 7 (2009), p. 96View Record in ScopusGoogle Scholar[72]S.F. Milrad, D.L. Hall, D.R. Jutagir, E.G. Lattie, G.H. Ironson, W. Wohlgemuth, et al.Poor sleep quality is associated with greater circulating pro-inflammatory cytokines and severity and frequency of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) symptoms in womenJ Neuroimmunol, 303 (2017), pp. 43-50ArticleDownload PDFView Record in ScopusGoogle Scholar[73]J.G. Montoya, T.H. Holmes, J.N. Anderson, H.T. Maecker, Y. Rosenberg-Hasson, I.J. Valencia, et al.Cytokine signature associated with disease severity in chronic fatigue syndrome patientsProc Natl Acad Sci U S A, 114 (2017), Article E7150-E8Google Scholar[74]M. Hornig, J.G. Montoya, N.G. Klimas, S. Levine, D. Felsenstein, L. Bateman, et al.Distinct plasma immune signatures in ME/CFS are present early in the course of illnessSci Adv, 1 (2015)Google Scholar[75]S. Blundell, K.K. Ray, M. Buckland, P.D. WhiteChronic fatigue syndrome and circulating cytokines: a systematic reviewBrain Behav Immun, 50 (2015), pp. 186-195ArticleDownload PDFView Record in ScopusGoogle Scholar[76]L.V. Clark, M. Buckland, G. Murphy, N. Taylor, V. Vleck, C. Mein, et al.Cytokine responses to exercise and activity in patients with chronic fatigue syndrome: case-control studyClin Exp Immunol, 190 (2017), pp. 360-371CrossRefView Record in ScopusGoogle Scholar[77]I. Moisini, A. DavidsonBAFF: a local and systemic target in autoimmune diseasesClin Exp Immunol, 158 (2009), pp. 155-163CrossRefView Record in ScopusGoogle Scholar[78]D. Saulep-Easton, F.B. Vincent, P.S. Quah, A. Wei, S.B. Ting, C.M. Croce, et al.The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cellsLeukemia, 30 (2016), pp. 163-172CrossRefView Record in ScopusGoogle Scholar[79]F. Mackay, P. SchneiderCracking the BAFF codeNat Rev Immunol, 9 (2009), pp. 491-502CrossRefView Record in ScopusGoogle Scholar[80]S. Lunde, E.K. Kristoffersen, D. Sapkota, K. Risa, O. Dahl, O. Bruland, et al.Serum BAFF and APRIL levels, T-lymphocyte subsets, and Immunoglobulins after B-cell depletion using the monoclonal anti-CD20 antibody rituximab in Myalgic Encephalopathy/Chronic Fatigue SyndromePLoS One, 11 (2016), Article e0161226CrossRefView Record in ScopusGoogle Scholar[81]J.O. Pers, C. Daridon, V. Devauchelle, S. Jousse, A. Saraux, C. Jamin, et al.BAFF overexpression is associated with autoantibody production in autoimmune diseasesAnn N Y Acad Sci, 1050 (2005), pp. 34-39CrossRefView Record in ScopusGoogle Scholar[82]M.P. Hedger, D.M. de KretserThe activins and their binding protein, follistatin-diagnostic and therapeutic targets in inflammatory disease and fibrosisCytokine Growth Factor Rev, 24 (2013), pp. 285-295ArticleDownload PDFView Record in ScopusGoogle Scholar[83]B.A. Lidbury, B. Kita, D.P. Lewis, S. Hayward, H. Ludlow, M.P. Hedger, et al.Activin B is a novel biomarker for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) diagnosis: a cross sectional studyJ Transl Med, 15 (2017), p. 60View Record in ScopusGoogle Scholar[84]O. Hosono, K. Ohnuma, N.H. Dang, C. MorimotoCD26: a key molecule in immune regulation and autoimmune diseasesMod Rheumatol, 13 (2003), pp. 199-204View Record in ScopusGoogle Scholar[85]M.A. Fletcher, X.R. Zeng, K. Maher, S. Levis, B. Hurwitz, M. Antoni, et al.Biomarkers in chronic fatigue syndrome: evaluation of natural killer cell function and dipeptidyl peptidase IV/CD26PLoS One, 5 (2010), Article e10817CrossRefView Record in ScopusGoogle Scholar[86]E. Fenouillet, A. Vigouroux, J.G. Steinberg, A. Chagvardieff, F. Retornaz, R. Guieu, et al.Association of biomarkers with health-related quality of life and history of stressors in myalgic encephalomyelitis/chronic fatigue syndrome patientsJ Transl Med, 14 (2016), p. 251View Record in ScopusGoogle Scholar[87]M. Okumura, Y. Hidaka, S. Kuroda, K. Takeoka, H. Tada, N. AminoIncreased serum concentration of soluble CD30 in patients with Graves’ disease and Hashimoto’s thyroiditisJ Clin Endocrinol Metab, 82 (1997), pp. 1757-1760View Record in ScopusGoogle Scholar[88]Y. Ichikawa, M. Yoshida, C. Yamada, T. Horiki, Y. Hoshina, M. UchiyamaCirculating soluble CD30 levels in primary Sjogren’s syndrome, SLE and rheumatoid arthritisClin Exp Rheumatol, 16 (1998), pp. 759-760View Record in ScopusGoogle Scholar[89]E. Oflazoglu, E.L. Simpson, R. Takiguchi, I.S. Grewal, J.M. Hanifin, H.P. GerberCD30 expression on CD1a+ and CD8+ cells in atopic dermatitis and correlation with disease severityEur J Dermatol, 18 (2008), pp. 41-49View Record in ScopusGoogle Scholar[90]T. Yoshikawa, T. Nanba, H. Kato, K. Hori, T. Inamoto, S. Kumagai, et al.Soluble FcϵRII/CD23 in patients with autoimmune diseases and Epstein-Barr virus-related disorders: analysis by ELISA for soluble FcϵRII/CD23ImmunoMethods, 4 (1994), pp. 65-71ArticleDownload PDFView Record in ScopusGoogle Scholar[91]E. Pawlak, I.E. Kochanowska, I. Frydecka, M. Kielbinski, S. Potoczek, M. BilinskaThe soluble CTLA-4 receptor: a new marker in autoimmune diseasesArch Immunol Ther Exp, 53 (2005), pp. 336-341View Record in ScopusGoogle Scholar[92]D. DejicaSerum soluble IL-2 receptor as a marker of lymphocyte activation in some autoimmune diseases. Effect of immunosuppressive therapyRoum Arch Microbiol Immunol, 60 (2001), pp. 183-201View Record in ScopusGoogle Scholar[93]J. Smith, E.L. Fritz, J.R. Kerr, A.J. Cleare, S. Wessely, D.L. MatteyAssociation of chronic fatigue syndrome with human leucocyte antigen class II allelesJ Clin Pathol, 58 (2005), pp. 860-863CrossRefView Record in ScopusGoogle Scholar[94]N. Carlo-Stella, S. Bozzini, A. De Silvestri, I. Sbarsi, C. Pizzochero, L. Lorusso, et al.Molecular study of receptor for advanced glycation endproduct gene promoter and identification of specific HLA haplotypes possibly involved in chronic fatigue syndromeInt J Immunopathol Pharmacol, 22 (2009), pp. 745-754CrossRefView Record in ScopusGoogle Scholar[95]A. Pasi, S. Bozzini, N. Carlo-Stella, M. Martinetti, S. Bombardieri, A. De Silvestri, et al.Excess of activating killer cell immunoglobulinlike receptors and lack of HLA-Bw4 ligands: a twoedged weapon in chronic fatigue syndromeMol Med Rep, 4 (2011), pp. 535-540View Record in ScopusGoogle Scholar[96]Y. KochiGenetics of autoimmune diseases: perspectives from genome-wide association studiesInt Immunol, 28 (2016), pp. 155-161CrossRefView Record in ScopusGoogle Scholar[97]B. Frederiksen, E. Liu, J. Romanos, A.K. Steck, X. Yin, M. Kroehl, et al.Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY)J Steroid Biochem Mol Biol, 133 (2013), pp. 51-57ArticleDownload PDFView Record in ScopusGoogle Scholar[98]S. Sigurdsson, G. Nordmark, S. Garnier, E. Grundberg, T. Kwan, O. Nilsson, et al.A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5Hum Mol Genet, 17 (2008), pp. 2868-2876CrossRefView Record in ScopusGoogle Scholar[99]G.M. Hirschfield, X. Liu, C. Xu, Y. Lu, G. Xie, Y. Lu, et al.Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variantsN Engl J Med, 360 (2009), pp. 2544-2555CrossRefView Record in ScopusGoogle Scholar[100]W.H. Ting, M.N. Chien, F.S. Lo, C.H. Wang, C.Y. Huang, C.L. Lin, et al.Association of Cytotoxic T- lymphocyte-associated protein 4 (CTLA4) gene polymorphisms with autoimmune thyroid disease in children and adults: case-control studyPLoS One, 11 (2016), Article e0154394CrossRefView Record in ScopusGoogle Scholar[101]G.C. Wu, H.F. Pan, R.X. Leng, D.G. Wang, X.P. Li, X.M. Li, et al.Emerging role of long noncoding RNAs in autoimmune diseasesAutoimmun Rev, 14 (2015), pp. 798-805ArticleDownload PDFView Record in ScopusGoogle Scholar[102]N. Carlo-Stella, C. Badulli, A. De Silvestri, L. Bazzichi, M. Martinetti, L. Lorusso, et al.A first study of cytokine genomic polymorphisms in CFS: positive association of TNF-857 and IFNgamma 874 rare allelesClin Exp Rheumatol, 24 (2006), pp. 179-182View Record in ScopusGoogle Scholar[103]M.S. Rajeevan, I. Dimulescu, J. Murray, V.R. Falkenberg, E.R. UngerPathway-focused genetic evaluation of immune and inflammation related genes with chronic fatigue syndromeHum Immunol, 76 (2015), pp. 553-560ArticleDownload PDFView Record in ScopusGoogle Scholar[104]E. Lee, S. Cho, K. Kim, T. ParkAn integrated approach to infer causal associations among gene expression, genotype variation, and diseaseGenomics, 94 (2009), pp. 269-277ArticleDownload PDFView Record in ScopusGoogle Scholar[105]M.S. Rajeevan, A.K. Smith, I. Dimulescu, E.R. Unger, S.D. Vernon, C. Heim, et al.Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndromeGenes Brain Behav, 6 (2007), pp. 167-176View Record in ScopusGoogle Scholar[106]C. Procaccini, M. Galgani, V. De Rosa, G. MatareseIntracellular metabolic pathways control immune toleranceTrends Immunol, 33 (2012), pp. 1-7ArticleDownload PDFView Record in ScopusGoogle Scholar[107]C.M. Spies, R.H. Straub, F. ButtgereitEnergy metabolism and rheumatic diseases: from cell to organismArthritis Res Ther, 14 (2012), p. 216CrossRefView Record in ScopusGoogle Scholar[108]J. Freitag, L. Berod, T. Kamradt, T. SparwasserImmunometabolism and autoimmunityImmunol Cell Biol, 94 (2016), pp. 925-934CrossRefView Record in ScopusGoogle Scholar[109]X. Chang, C. WeiGlycolysis and rheumatoid arthritisInt J Rheum Dis, 14 (2011), pp. 217-222View Record in ScopusGoogle Scholar[110]N.E. Booth, S. Myhill, J. McLaren-HowardMitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)Int J Clin Exp Med, 5 (2012), pp. 208-220View Record in ScopusGoogle Scholar[111]M. Maes, F.N. Twisk, K. RingelInflammatory and cell-mediated immune biomarkers in myalgic encephalomyelitis/chronic fatigue syndrome and depression: inflammatory markers are higher in myalgic encephalomyelitis/chronic fatigue syndrome than in depressionPsychother Psychosom, 81 (2012), pp. 286-295CrossRefView Record in ScopusGoogle Scholar[112]J. Castro-Marrero, M.D. Cordero, N. Saez-Francas, C. Jimenez-Gutierrez, F.J. Aguilar-Montilla, L. Aliste, et al.Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia?Antioxid Redox Signal, 19 (2013), pp. 1855-1860CrossRefView Record in ScopusGoogle Scholar[113]S. Myhill, N.E. Booth, J. McLaren-HowardTargeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical auditInt J Clin Exp Med, 6 (2013), pp. 1-15View Record in ScopusGoogle Scholar[114]C.W. Armstrong, N.R. McGregor, J.R. Sheedy, I. Buttfield, H.L. Butt, P.R. GooleyNMR metabolic profiling of serum identifies amino acid disturbances in chronic fatigue syndromeClin Chim Acta, 413 (2012), pp. 1525-1531ArticleDownload PDFView Record in ScopusGoogle Scholar[115]C.W. Armstrong, N.R. McGregor, D.P. Lewis, H.L. Butt, P.R. GooleyMetabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patientsMetabolomics, 11 (2015), pp. 1626-1639CrossRefView Record in ScopusGoogle Scholar[116]O. Fluge, O. Mella, O. Bruland, K. Risa, S.E. Dyrstad, K. Alme, et al.Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndromeJCI Insight, 1 (2016), Article e89376Google Scholar[117]A. Germain, D. Ruppert, S.M. Levine, M.R. HansonMetabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolismMol BioSyst, 13 (2017), pp. 371-379CrossRefView Record in ScopusGoogle Scholar[118]R.K. Naviaux, J.C. Naviaux, K. Li, A.T. Bright, W.A. Alaynick, L. Wang, et al.Metabolic features of chronic fatigue syndromeProc Natl Acad Sci U S A, 113 (2016), pp. E5472-80CrossRefView Record in ScopusGoogle Scholar[119]E. Yamano, M. Sugimoto, A. Hirayama, S. Kume, M. Yamato, G. Jin, et al.Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cyclesSci Rep, 6 (2016), Article 34990View Record in ScopusGoogle Scholar[120]L.A. Aaron, R. Herrell, S. Ashton, M. Belcourt, K. Schmaling, J. Goldberg, et al.Comorbid clinical conditions in chronic fatigue: a co-twin control studyJ Gen Intern Med, 16 (2001), pp. 24-31CrossRefView Record in ScopusGoogle Scholar[121]D. Buskila, P. Sarzi-PuttiniFibromyalgia and autoimmune diseases: the pain behind autoimmunityIsr Med Assoc J, 10 (2008), pp. 77-78View Record in ScopusGoogle Scholar[122]F. Wolfe, K. Ross, J. Anderson, I.J. Russell, L. HebertThe prevalence and characteristics of fibromyalgia in the general populationArthritis Rheum, 38 (1995), pp. 19-28CrossRefView Record in ScopusGoogle Scholar[123]J. Castro-Marrero, M. Faro, L. Aliste, N. Saez-Francas, N. Calvo, A. Martinez-Martinez, et al.Comorbidity in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: a nationwide population-based cohort studyPsychosomatics, 58 (2017), pp. 533-543ArticleDownload PDFView Record in ScopusGoogle Scholar[124]L.A. Jason, S. McManimen, M. Sunnquist, J.L. Newton, E.B. StrandExamining those meeting IOM criteria versus IOM plus fibromyalgiaNeurology, 5 (2017), pp. 19-28View Record in ScopusGoogle Scholar[125]W.M. Tunbridge, D.C. Evered, R. Hall, D. Appleton, M. Brewis, F. Clark, et al.The spectrum of thyroid disease in a community: the Whickham surveyClin Endocrinol, 7 (1977), pp. 481-493CrossRefView Record in ScopusGoogle Scholar[126]H. Li, X. Yu, C. Liles, M. Khan, M. Vanderlinde-Wood, A. Galloway, et al.Autoimmune basis for postural tachycardia syndromeJ Am Heart Assoc, 3 (2014), Article e000755CrossRefView Record in ScopusGoogle Scholar[127]J. Li, Q. Zhang, Y. Liao, C. Zhang, H. Hao, J. DuThe value of acetylcholine receptor antibody in children with postural tachycardia syndromePediatr Cardiol, 36 (2015), pp. 165-170CrossRefView Record in ScopusGoogle Scholar[128]X. Yu, S. Stavrakis, M.A. Hill, S. Huang, S. Reim, H. Li, et al.Autoantibody activation of beta- adrenergic and muscarinic receptors contributes to an “autoimmune” orthostatic hypotensionJ Am Soc Hypertens, 6 (2012), pp. 40-47ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[129]O. Fluge, K. Risa, S. Lunde, K. Alme, I.G. Rekeland, D. Sapkota, et al.B-lymphocyte depletion in Myalgic encephalopathy/ chronic fatigue syndrome. An open-label phase II study with rituximab maintenance treatmentPLoS One, 10 (2015), Article e0129898CrossRefView Record in ScopusGoogle Scholar[130]N.A. EndicottChronic fatigue syndrome in private practice psychiatry: family history of physical and mental healthJ Psychosom Res, 47 (1999), pp. 343-354ArticleDownload PDFView Record in ScopusGoogle Scholar[131]O. Fluge, O. Bruland, K. Risa, A. Storstein, E.K. Kristoffersen, D. Sapkota, et al.Benefit from B- lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double- blind and placebo-controlled studyPLoS One, 6 (2011), Article e26358CrossRefView Record in ScopusGoogle Scholar[132]P. Whiting, A.M. Bagnall, A.J. Sowden, J.E. Cornell, C.D. Mulrow, G. RamirezInterventions for the treatment and management of chronic fatigue syndrome: a systematic reviewJAMA, 286 (2001), pp. 1360-1368View Record in ScopusGoogle Scholar[133]P.K. Peterson, J. Shepard, M. Macres, C. Schenck, J. Crosson, D. Rechtman, et al.A controlled trial of intravenous immunoglobulin G in chronic fatigue syndromeAm J Med, 89 (1990), pp. 554-560ArticleDownload PDFView Record in ScopusGoogle Scholar[134]A. Lloyd, I. Hickie, D. Wakefield, C. Boughton, J. DwyerA double-blind, placebo-controlled trial of intravenous immunoglobulin therapy in patients with chronic fatigue syndromeAm J Med, 89 (1990), pp. 561-568ArticleDownload PDFView Record in ScopusGoogle Scholar[135]U. Vollmer-Conna, I. Hickie, D. Hadzi-Pavlovic, K. Tymms, D. Wakefield, J. Dwyer, et al.Intravenous immunoglobulin is ineffective in the treatment of patients with chronic fatigue syndromeAm J Med, 103 (1997), pp. 38-43ArticleDownload PDFView Record in ScopusGoogle Scholar[136]K.S. RoweDouble-blind randomized controlled trial to assess the efficacy of intravenous gammaglobulin for the management of chronic fatigue syndrome in adolescentsJ Psychiatr Res, 31 (1997), pp. 133-147ArticleDownload PDFView Record in ScopusGoogle Scholar[137]C. Scheibenbogen, M. Loebel, H. Freitag, A. Krueger, S. Bauer, M. Antelmann, W. Doehner, N. Scherbakov, H. Heidecke, P. Reinke, H.D. Volk, P. GrabowskiImmunoadsorption to remove ß2 adrenergic receptor antibodies in Chronic Fatigue Syndrome CFS/MEPLoS One, 13 (3) (2018), p. e0193672, 10.1371/journal.pone.0193672CrossRefView Record in ScopusGoogle ScholarView Abstract© 2018 The Author(s). Published by Elsevier B.V.